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Classical MD data on the charge-charge dynamic structure factor of two-component plasmas �TCP� modeled
in Phys. Rev. A 23, 2041 �1981� are analyzed using the sum rules and other exact relations. The convergent
power moments of the imaginary part of the model system dielectric function are expressed in terms of its
partial static structure factors, which are computed by the method of hypernetted chains using the Deutsch
effective potential. High-frequency asymptotic behavior of the dielectric function is specified to include the
effects of inverse bremsstrahlung. The agreement with the MD data is improved, and important statistical
characteristics of the model TCP, such as the probability to find both electron and ion at one point, are
determined.
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I. INTRODUCTION

Classical molecular dynamics �MD� simulations of model
two-component plasmas �TCPs� were carried out in Ref. �1�
more than twenty five years ago. The system modeled in this
pioneer work was a fully ionized strongly coupled hydrogen
TCPs of temperature T consisting of electrons �a=e,
Ze=−1� with the number density n and protons �a= i,
Zi= +1� with the same number density. The dynamic and
static characteristics studied were the charge-charge dynamic
structure factor, the species partial static structure factors and
the static radial distribution functions, etc. Classical statisti-
cal averages were computed on the basis of the ergodic hy-
pothesis while the quantum delocalization preventing the
collapse were taken into account through the use of the Deut-
sch pair effective potential �2� arising from the quantum-
diffraction effects without including the exchange or symme-
try contribution

�ab�r� = ZaZb
e2

r
�1 − exp�− �abr��, a,b = e,i ,

�ab =�2��ab

��2 , �ab = �ma
−1 + mb

−1�−1, �1�

where �ab is the reduced mass of an a-b pair and �−1 is the
temperature in energy units. The fact that the potentials �1�
remain finite as r→0 is a consequence of the uncertainty
principle and prevents the collapse to which we have already
referred. In the temperature range of interest

�iia � 1, a =�3 3

4�n

being the Wigner-Seitz or the “ion sphere” radius. Thus the
effective ion-ion interaction is virtually identical to the bare
Coulomb potential at all separations.

In addition, in Ref. �1� the potential �1� was also em-
ployed to determine the static properties in the hypernetted-
chain �HNC� approximation. Since 1981, little effort was
made to simulate this benchmark high-energy density system
and study its static and dynamic properties. We mention a

few related works: �i� the static electrical conductivity was
studied in Refs. �3,4�, �ii� the TCP dynamic characteristics in
a different range of values of the wavenumber were investi-
gated in Ref. �5�.

The results of Ref. �1� were analyzed in Ref. �6� using the
sum rules and other exact relations. An overall agreement
with the MD results was obtained in Ref. �6�, where the
frequency moments of the imaginary part of the plasma in-
verse dielectric function �−1�k ,	� �the sum rules� were cal-
culated for the bare Coulomb potential.

Our aim here is to reexamine the simulation data of Ref.
�1� and the theoretical results of Ref. �6� within the moment
approach and using the method of effective potentials to
evaluate the static characteristics of the TCP. Mathematical
details of the moment approach are provided in the following
section. A model Nevanlinna parameter function taking into
account the fractional asymptotic form of the imaginary part
of the system dielectric function is suggested in Sec. II B; in
Sec. II C the convergent power moments of the loss function
�−Im �−1�k ,	� /	� of the model system are calculated using
the Deutsch effective potential and are computed by the
method of hypernetted-chains using the same potential; for a
recent review of the method of effective potentials see Ref.
�7�. Numerical results and conclusions are presented in Secs.
III and IV, respectively. The agreement with the MD data is
improved significantly, and, simultaneously, important statis-
tical characteristics of the model TCP in concern, such as the
probability to find both electron and ion at one point �gei�0��,
are determined, direct and exchange interaction contributions
being compared.

II. THE METHOD OF MOMENTS

A. The background

The MD results of Ref. �1� on the charge-charge dynamic
structure factor Szz�k ,	� were modeled in Ref. �6� using the
moment approach which automatically takes into account the
sum rules and other exact relations. The starting point in the
application of the method of moments �11� to the calculation
of the system dynamic correlation function is the fluctuation-
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dissipation theorem �FDT� which relates the latter to the sys-
tem dissipation characteristic, the Green function, whose
power frequency moments, by virtue of the Kubo theory of
linear response, can be directly expressed in terms of the
static correlators of the time derivatives of the system ob-
servables. These static characteristics can be expressed, us-
ing the system model Hamiltonian, in terms of the system
structural static correlation functions such as the radial dis-
tribution functions or the static structure factors, and this is
the only step of our approach where the system model inter-
feres. Otherwise the relations we use are model-free. They
are based on mathematical results which are independent of
the physical details, i.e., the interaction potential. This per-
mits us to apply the moment approach to non-perturbative
systems which lack small parameters, such as the one we
deal with here.

Indeed, in a classical Coulomb system the characteristic
perturbation parameter is the potential energy of two charges
at an average distance, i.e., the Wigner-Seitz radius a, di-
vided by the characteristic kinetic energy or the system tem-
perature


 = �e2/a .

The achievement of the work by Hansen and McDonald �1�
was that the values of 
�1 �precisely 
=0.5 and 
=2� and
rs=0.4 and rs=1, where

rs =
a

a0
=

ame2

�2 ,

a0 being the Bohr radius, were considered, which correspond
to strongly coupled Coulomb systems or high-energy density
�HED� matter. Under these conditions the Landau length, the
Wigner-Seitz radius, and the Debye radius

�D =
a

�3


are of the same order of magnitude, so that no effective
screening takes place: there is only one or less particles in
the Debye sphere. Hence, standard theoretical treatments,
e.g., the kinetic theory are not applicable, and we need alter-
native approaches such as the one based on the method of
moments.

There is an additional dimensionless parameter which is
commonly used to characterize the kind of statistical systems
we consider. This is the so-called degeneracy parameter

−1 = �EF = 1.84159



rs

which compares the Fermi energy of the system EF to its
thermal energy. For the thermodynamic conditions consid-
ered in Ref. �1� and here −1�1, which means that strongly
coupled two-component plasmas are intrinsically quantum
statistical systems, and we might expect their physical prop-
erties to be greatly influenced by their quantum mechanical
nature.

Nevertheless, due to the significant difficulties encoun-
tered in the analytical and computational modeling of these
systems, it is a commonplace to use classical statistical ap-

proaches to investigate multicomponent plasmas. These clas-
sical approximations, like MD or HNC calculations, do re-
quire the application of potentials which effectively take into
account the quantum mechanical nature of these systems,
especially the quantum diffraction preventing the classical
Coulomb collapse.

As we have said, the only step where the physical model
under consideration appears explicitly in the method of mo-
ments is the modelling of the system Hamiltonian required to
compute the frequency moments of the Green function �see
Sec. II C�. Strictly speaking, these calculations can be carried
out according to the rules of quantum statistical mechanics,
and therefore no effective potential is needed. This means
that the potential appearing in the Hamiltonian must be un-
derstood as the real interaction among charged particles at
the microscopic level, which is, of course, the Coulomb po-
tential.

However, our main aim here is to compare the static and
dynamic characteristics obtained for the TCP with those of
Ref. �1�. Thus, we will work under the same general frame-
work in order to better assess the applicability of our ap-
proach. In this sense, the usage of the classical version of the
FDT is justified:

Szz�k,	� =
L�k,	�
����k�

, �2�

where

��k� =
4�e2

k2 ,

L�k,	� = −
Im �−1�k,	�

	
�3�

being the loss function of the system, which is assumed to be
isotropic. The sum rules we employ are actually the power
frequency moments of this loss function

C��k� =
1

�
�

−�

�

	�L�k,	�d	, � = 0,2,4. �4�

Notice that odd-order moments vanish due to the symmetry
of the loss function.

The Nevanlinna formula of the classical theory of mo-
ments �8,9� �for a recent review see Ref. �10�� expresses the
response function �11�

�−1�k,z� = 1 +
	p

2�z + Q�
z�z2 − 	2

2� + Q�z2 − 	1
2�

�5�

in terms of a Nevanlinna class function Q=Q�k ,z�, analytic
in the upper half-plane Im z�0 and possessing there a posi-
tive imaginary part Im Q�k ,	+ i���0,��0. The function
Q�k ,z� should also satisfy the limiting condition

Q�k,z�
z

——→
z↑�

0, Im z � 0. �6�

Any such function admits the integral representation �8,9�
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Q�k,z� = ih�k� + �
−�

� � 1

t − z
−

t

1 + t2�dg�t� �7�

with Re h�k��0 and some nondecreasing bounded function
g�t� such that

�
−�

� dg�t�
1 + t2 � � .

The frequencies 	1�k� and 	2�k� in Eq. �5� are defined by
the respective ratios of the moments C� �11�

	1
2 = 	1

2�k� = C2�k�/C0�k�, 	2
2 = 	2

2�k� = C4�k�/C2�k� ,

�8�

the latter are expressible in terms of the system static char-
acteristics, see Sec. II C.

It is easily seen �8� that the analytic prolongation of the
loss function onto the upper half-plane Im z�0 constructed
by means of the Cauchy integral formula

L�k,z� =
1

�
�

−�

� L�k,	�
	 − z

admits the asymptotic expansion

L�k,z → �� 	 −
C0�k�

z
−

C2�k�
z3 −

C4�k�
z5 − O� 1

z5� , �9�

while the expansion for the inverse dielectric function due to
the Kramers-Kronig relations

�−1�k,z� = 1 +
1

�
�

−�

� Im �−1�k,	�
	 − z

d	 �10�

reads:

�−1�k,z → �� 	 1 +
C2�k�

z2 +
C4�k�

z4 + O� 1

z4� 	 1 +
	p

2

z2

+
	p

2	2
2

z4 + O� 1

z4�, Im z � 0. �11�

Certainly, the expansions �9� and �11� stem from Eq. �5� by
virtue of the condition �6� �26�; the convergence of the mo-
ment C0�k� follows from the existence of the static inverse
dielectric function

�−1�k,0� = lim
�↓0

�−1�k,i�� = 1 + P�
−�

� Im �−1�k,	�
�	

d	 .

�12�

It is important that the inverse dielectric function �5� sat-
isfies the sum rules �4� by construction, irrespectively of the
form of the Nevanlinna parameter function Q�k ,z� �see Sec.
II B�. In particular, this means that the asymptotic expansions
�9� and �11� are also valid for any function Q�k ,z�.

Moreover, the inclusion of the moment C0�k� guarantees
that the inverse dielectric function �5� meets the compress-
ibility sum rule �12� whenever �−1�k ,0� does. Within the
present approach, this can be fulfilled by means of the rela-
tion between the charge-charge static structure factor and the

static value of the plasma dielectric function �12�, see below
in Sec. III A, Eqs. �33� and �34�.

In general, there is no phenomenological basis for the
choice of a unique Q�k ,z�, which would provide the exact
expression for the loss function. The simplest is to approxi-
mate Q�k ,z� by its static value ih�k� directly related to the
static value Szz�k ,0� of the dynamic structure factor through
Eq. �2�,

h�k� =
	p

2

����k�
	2

2 − 	1
2

Szz�k,0�	1
4 . �13�

In this case the dynamic structure factor reads

Szz�k,	� =
	p

2

����k�
h�	2

2 − 	1
2�

	2�	2 − 	2
2�2 + h2�	2 − 	1

2�2 . �14�

This is the approximation which was used as a basis of the
analysis carried out in Ref. �6�. If we use it now combined
with more precise values for the power moments calculated
using the Deutsch potential �2�, we fail to predict the values
of the Langmuir collective mode frequency, i.e., the position
of the lateral peak of the dynamic structure factor, and its
width, i.e., the approximation Q�k ,z�= ih�k� is insufficient.

B. The Nevanlinna parameter function

It is quite clear from Eqs. �2�, �6�, and �5� that the param-
eter function Q�k ,z� modifies both the position and the width
of the Langmuir line in the spectrum of collective excitations
of the system, as reflected in its charge-charge dynamic
structure factor. If we neglect the processes of energy absorp-
tion completely, we should put in Eq. �14�h�k�=0+. Math-
ematically this means the utilization, instead of the Nevan-
linna formula �5�, of the canonical solution of the �truncated
Hamburger� moment problem consisting of finding a loss
function which satisfies the moment conditions �4� or,
equivalently, admits the expansion �9�.

The canonical solution physically corresponds to the ex-
istence in the system of the diffusion �unshifted� and the
infinitesimally decaying Langmuir �shifted� mode, and im-
plies a Feynman-like decay-free approximation for the
charge-charge dynamic structure factor �2�:

Szz�k,	� = �
	2
2 − 	1

2

	2
2 ��	� +

	1
2

2	2
2 ���	 − 	2� + ��	 + 	2��� ,

�15�

where �=��k�=C0�k� /���k�.
To specify the Nevanlinna parameter function Q�k ,z� and,

hence, the noncanonical solution given by the Nevanlinna
formula �5�, we have to reconsider the details of energy ab-
sorption in the system without violating the sum rules.

Precisely, in addition to the expansion �11�, we want to
satisfy the well-known Perel’-Eliashberg asymptotic form for
the imaginary part of the dielectric function. The latter result
can be summarized in the following way. In a completely
ionized plasma for 	� ����−1 the microscopic acts of the
electromagnetic field energy absorption become the pro-
cesses which are inverse with respect to the bremsstrahlung
during pair collisions of charged particles.
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As was shown by Ginzburg �13�, this circumstance per-
mits one to use the detailed equilibrium principle to express
the imaginary part of the dielectric function Im ��k ,	�, of a
completely ionized plasma in terms of the bremsstrahlung
cross section and leads to the following asymptotic form of
Im ��k ,	� in a completely ionized �for simplicity, hydrogen-
like� plasma obtained by Perel’ and Eliashberg �14� �see also
Refs. �15,16� for an alternative derivation of this result and
its specification based on the known expression for the
bremsstrahlung differential cross section for high values of
energy transfer and 	� ����−1 �17��:

Im ��k,	 � ����−1� 	
4�A

	9/2 , �16�

where

A =
25/2�

3

n2e6

��m�3/2 . �17�

Result �16� also implies that higher even-order frequency
moments C2l�k� , l�3 diverge.

To take into account all convergent sum rules �power fre-
quency moments� and the exact asymptotic relation �16� we
apply the Nevanlinna formula �5� with the following interpo-
lation model expression for the Nevanlinna parameter func-
tion �27�:

Q�k,z� = B�k��z�1 + i� + ih�k� � Q1�k,z� + iQ2�k,z� ,

�18�

with

B�k� =
4�A

	p
2�	2

2 − 	1
2�

� 0,

since by virtue of the Cauchy-Schwarz inequality 	2
2−	1

2

�0. Observe that

B�k��	p =
�2

35/4

rs
3/4	p

3

�	2
2 − 	1

2�

so that

Q�k,z�
	p

=
�2

35/4

rs
3/4	p

2

	2
2 − 	1

2� z

	p
�1 + i� + i

	2
2 − 	1

2

3�
	1
4

	p
2q2

s�q,0�
,

s�q,0� =
	p

n
Szz�k,0�

being the dimensionless charge-charge dynamic structure
factor at 	=0 and q=ka. The values of s�q ,0� are provided
in Table IV of Ref. �1�.

The expression for the �inverse� dielectric function and,
hence, for the dynamic structure factor �2� with the Nevan-
linna parameter function determined in Eq. �18�, leads to the
correct static value Szz�k ,0� of the dynamic structure factor,
satisfies all three sum rules �4� and also satisfies the exact
relation �16�.

The range of frequencies studied in Ref. �1� was about
�0,2	p�, so that no data was obtained for the frequencies
which satisfy the condition 	� ����−1 or, equivalently,

	

	p
�� rs

3
2 .

On the other hand, in spite of the classical approximations
used here for comparison with Ref. �1�, as we have discussed
previously, the system we consider possesses an inherent
quantum mechanical nature, and we may presume that the
asymptotic form �16� is applicable to it.

By inserting Eq. �18� into �2� we get

Szz�k,	� =
	p

2

����k�
�	2

2�k� − 	1
2�k��Q2�k,	�

	�	2 − 	2
2�k�� + Q�k,	��	2 − 	1

2�k��2
,

�19�

which reduces the determination of the dynamic structure
factor to the knowledge of the static characteristics—the fre-
quency moments C��k� ,�=0,2 ,4, see Sec. II C.

The latter were calculated back in 1993 in Ref. �6� in
terms of the static structure factors of both system species
Sab�k� beyond the random-phase approximation with the in-
clusion of both electronic and ionic local-field corrections
�STLCs�. The electronic STLC was modeled �18,19� as an
interpolation of the Geldart-Vosko form

Ge�k� =
k2

c1ks
2 + c2k2 , �20�

where ks
−1 is the screening length of the electronic subsystem,

treated as a one-component plasma �EOCP�, an appropiate
interpolation between the Debye and Thomas-Fermi radia
�for details see Ref. �6��:

�e�k� = 1 + ks
2/k2. �21�

The interpolation parameters c1 and c2 were chosen in Ref.
�19� to satisfy the compressibility sum rule for the classical
EOCP �18,19� with the equation of state taken from the MD
numerical simulations available at that time �20�, and the
Kimball cusp condition �21,22�

lim
k→�

Ge�k� = 1 − ge�0� . �22�

The ionic STLC,

Gi�k� =
k2

c1ks
2 + c2k2�e�k�

, �23�

and the structural characteristics, i.e., the zero-separation
value of the electronic radial distribution function ge�0� and
the static structure factors Sab�k� were determined in Ref. �6�
according to the Ichimaru algorithm �23� in a self-consistent
way in terms of the EOCP static structure factor Se�k�. To
take into account the quantum mechanical corrections, Se�k�
was computed in Ref. �6� using the temperature Green’s
function technique by a regularized summation over the Mat-
subara frequencies.

To avoid all these cumbersome computations and, more
important, to improve the agreement with the simulation data
of Ref. �1� on the dynamic characteristics of dense two-
component plasmas, the plasma static characteristics have
been calculated in the present work by the HNC method with
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the Deutsch effective potential, as was done in Ref. �1�.

C. The moments

The explicit form of the power moments C��k� ,�
=0,2 ,4 for the bare Coulomb potential has been known for
some time �11� �for details see Ref. �16��:

C0�k� = �1 − �−1�k,0��, C2�k� = 	p
2, C4�k� = 	p

4�1 + W�k�� .

�24�

The moment C0�k�, as was already commented on, is related
to the static dielectric function of the system, the second
moment is actually the f-sum rule, which is independent of
the system interactions. The correction in the fourth moment
contains different contributions

W�k� = K�k� + U�k� + H .

The first contribution stems from the kinetic term of the sys-
tem Hamiltonian. In the classical case, this coincides with
the known Vlasov contribution to the dispersion relation

K�k� = 3
k2

kD
2 , �25�

kD
2 =4�ne2� being the square of the Debye wave number.

Here, as in Eq. �24�, we only account for the electronic sub-
system, due to the large asymmetry between the masses of
electrons and ions. We use expression �25� for comparison
with the results of Ref. �1�. Nonetheless, due to the quantal
nature of our system, it would be interesting to estimate
quantitatively how the degeneracy would affect the disper-
sion law and the dynamic structure factor of the system
through this kinetic contribution. In the quantum mechanical
case, it can be recast as

K�k� =
�ve

2�k2

	p
2 + � �

2m
�2 k4

	p
2 , �26�

where the average of the square of the electron velocity is
expressed as

�ve
2� = 3



m�
F3/2��� ,

where

F���� = �
0

� x�

exp�x − �� + 1
dx

is the order-� Fermi integral, and �=�� the dimensionless
chemical potential of the electronic subsystem, which should
be determined by the normalization condition

F1/2��� =
2

3
−3/2.

The last two terms in the fourth moment correction term
stem from the interaction contribution to the system Hamil-
tonian and are, therefore, dependent on the potential used.
For the bare Coulomb potential we write

U�k� =
1

2�2n
�

0

�

p2�See�p� − 1�f�p,k�dp ,

H =
1

3
hei�0� =

1

3
�gei�0� − 1� =

1

6�2n
�

0

�

p2Sei�p�dp ,

where we have introduced

f�p,k� =
5

12
−

p2

4k2 +
�k2 − p2�2

8pk3 ln� p + k

p − k
� .

However, for the sake of a better comparison with the MD
results of Ref. �1�, we recalculated here these moments using
the model Hamiltonian with the Coulomb potential substi-
tuted by the model Deutsch effective potential. Then, the
moment C2�k� �the f-sum rule� remains intact, the moment
C0�k� changes together with the model system static dielec-
tric function, and instead of C4�k� we have

C̃4�k� = 	p
4�1 + W̃�k�� , �27�

where the “model” W̃�k� has the same kinetic contribution
K�k� �either classical or degenerate�, but the interaction con-
tributions are substituted by

Ũ�k� =
1

2�2n
�

0

�

p2�S̃ee�p� − 1� f̃�p,k�dp �28�

and

H̃ =
�ei

2

6�2n
�

0

� p2S̃ei�p�
p2 + �ei

2 dp . �29�

Here

f̃�p,k� =
�ee

2

4k2 +
�k2 − p2�2

8pk3 ln� p + k

p − k
�

−
�p2 + �ee

2 − k2�2

16pk3 ln
�p + k�2 + �ee

2

�p − k�2 + �ee
2 −

�ee
2 /3

p2 + �ee
2 .

In addition, the model partial static structure factors S̃ab�k�
have been computed in the hypernetted-chain approximation
using the Deutsch effective potential. This closes the algo-
rithm of calculation of the static and dynamic characteristics
of the system. Some numerical results are discussed in the
following section.

TABLE I. Partial static structure factors at 
=0.5, rs=0.4 with
the Deutsch effective potential without exchange �1�.

q=ka Sii�k� Sie�k� See�k� Szz�k�a

0.767 0.5804 0.4387 0.6590 0.3620

1.074 0.6257 0.3600 0.7391 0.6448

1.381 0.6824 0.2813 0.8118 0.9316

1.534 0.7118 0.2455 0.8425 1.0634

aCalculated from Eq. �30� or �31�.
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III. NUMERICAL RESULTS

A. Static characteristics

As was mentioned before, we calculated the static struc-
ture factors and the radial distribution functions in the
hypernetted-chain approximation using the Deutsch effective
potential �1�, just as was done in Ref. �1�. Some data on the
partial static structure factors are presented in Tables I–III. It
is not surprising that the agreement we obtain with the values
of the static characteristics given in Table V of Ref. �1�, is
within the computational error. We also add the correspond-
ing values of the charge-charge static structure factor Szz�k�
calculated by the following relation:

Szz�k� = Sii�k� + See�k� − 2Sie�k� �30�

and check the zero-order frequency moment of the dynamic
factor �19�,

Szz�k� =
1

n
�

−�

�

Szz�k,	�d	 �31�

to find an agreement to the fourth decimal digit.
The other two dimensionless even-order power moments

of the dynamic structure factor �19� are defined as

S��k� =
1

n	p
��

−�

�

	�Szz�k,	�d	, � = 2,4, �32�

the latter being provided in Table IV. By virtue of the clas-
sical version of the FDT used here, the odd-order moments
vanish due to the symmetry of Eq. �19�.

These values are then used to determine the characteristic

frequencies 	1�k�=�C2�k� / C̃0�k� and 	2�k�=�C̃4�k� /C2�k�
which virtually coincide with their values calculated from
the formulas �27�–�29�, but now differ significantly from the
values given in Table VI of Ref. �6�. Notice that due to Eqs.

�5� and �12� and the FDT, the static inverse dielectric func-

tion and the moment C̃0�k� are directly related to the charge-
charge static structure factor �31�:

Szz�k� = −
k2

kD
2 P�

−�

�

Im �−1�k,	�
d	

�	
=

k2

kD
2 �1 − Re �−1�k,0�� .

�33�

Thus the moment C̃0�k� was estimated as

C̃0�k� =
kD

2

k2 Szz�k� �34�

with the static structure factor Szz�k� also calculated in the
hypernetted-chain approximation using the Deutsch effective
potential �1�.

Further, we display our results on the values of the partial
radial distribution functions at zero separation gee�0� and
gie�0�, computed using the effective potential �1� and also
taking into account �within the HNC scheme� the symmetry
effects in the electron-electron exchange contribution to the
effective potential �while leaving other components un-
changed�:

TABLE II. Same as in Table I, but for 
=0.5, rs=1.

q=ka Sii�k� Sie�k� See�k� Szz�k�a

0.767 0.6160 0.4606 0.6470 0.3418

1.074 0.6663 0.3943 0.7144 0.5922

1.381 0.7192 0.3275 0.7769 0.8412

1.534 0.7447 0.2952 0.8081 0.9624

aCalculated from Eq. �30� or �31�.

TABLE III. Same as in Table I, but for 
=2, rs=1.

q=ka Sii�k� Sie�k� See�k� Szz�k�a

0.767 0.5642 0.5821 0.7197 0.1198

1.074 0.5133 0.5001 0.7385 0.2516

1.381 0.5067 0.4275 0.7769 0.4286

1.534 0.5174 0.3940 0.7993 0.5288

aCalculated from Eq. �30� or �31�.

TABLE IV. The fourth dimensionless power moment of
Szz�k ,	�, according to Eq. �32�, with the Deutsch effective potential
without exchange �1�. In the classical case, the kinetic contribution
is approximated by the Vlasov term �25�, whereas in the quantal
case expression �26� is used.

q=ka

Classical Quantal


=0.5
rs=0.4


=0.5
rs=1.0


=2.0
rs=1.0


=0.5
rs=0.4


=0.5
rs=1.0


=2.0
rs=1.0

0.767 0.8845 0.9318 0.1403 1.1175 0.9966 0.1680

1.074 2.6028 2.6943 0.3294 3.6028 2.9856 0.4462

1.381 6.2193 6.3685 0.6644 9.3337 7.3169 1.0217

1.534 9.0728 9.2555 0.9073 14.1572 10.8366 1.4855

TABLE V. Zero-separation values of the partial radial distribu-
tion functions compared to the results of Ref. �24�.


  rs gee�0�a gie�0�a gee�0�b gie�0�b gie�0�c

0.1 0.1000 0.0184 0.9598 1.0684 0.7309 1.0474 1.0358

0.1 2.0000 0.3683 0.7569 1.5164 0.3868 1.5045 1.3478

0.5 0.4344 0.4000 0.6629 1.9865 0.3897 1.8874 1.4412

0.5 1.0860 1.0000 0.4707 3.5224 0.2500 3.2600 1.8963

1.0 0.1000 0.1842 0.7738 1.4979 0.6159 1.4276 1.2351

aWith Eq. �1�.
bWith Eqs. �1� and �35�.
cValues from Ref. �24�.
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�ee�r� =
e2

r
�1 − exp�− �eer�� +

ln 2

�
exp�−

r2�ee
2

� ln 2
�;

�35�

for comparison we present also the values of gie�0� calcu-
lated analytically in Ref. �24�, see Table V.

In addition, we display the graphs for the three partial
radial distribution functions for the conditions 
=0.5 and
rs=0.4, calculated with the potential �1�, Fig. 1. The curves
in Fig. 1 are virtually indistinguishable from those of Fig. 2
of Ref. �1�.

B. Dynamic characteristics

Results on the dynamic structure factor itself are broadly
presented in Figs. 2–4. The agreement between these graphs

and the corresponding MD results of Ref. �1� is quantita-
tively good, and it is better than that achieved in Ref. �6�.
The introduction of the nonconstant Nevanlinna parameter
function �18� not only permits to obtain better agreement in
the position of the Langmuir peaks, but also leads to the
adequate broadening �damping� of the Langmuir mode.

In this sense, it is interesting to calculate the complex
solution for the dispersion equation ��k ,z�=0 explicitly in
order to determine quantitatively the damping of the collec-
tive mode. From Eq. �11� we get the equation

z�z2 − 	2
2� + Q�z2 − 	1

2� = 0. �36�

Due to the fact that the function �−1�k ,z� must be analytic in
the upper half-plane, the solution of the dispersion equation,

0 0.5 1 1.5 2
r�a
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1

1.5

2

g
�
r

�

ei

ee

ii

FIG. 1. The radial distribution functions gab�r�, a ,b=e , i for 

=0.5, rs=0.4, calculated with the potential �1�. Solid lines are in-
cluded to join the discrete points for a better visualization.
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FIG. 2. Normalized dynamic structure factor versus frequency
as given by expression �19� at 
=0.5, rs=0.4. The model parameter
function �18� is used. The values of ka are �1� 0.767, �2� 1.074, �3�
1.381, and �4� 1.534. �a� Classical calculations �solid lines� com-
pared to the results of Ref. �1� with ka=0.780 �diamonds�, ka
=1.102 �triangles�, ka=1.350 �boxes�, and ka=1.559 �stars�. �b�
Comparison between classical �dashed� and quantal calculations
�solid�. In the classical case, the kinetic contribution is approxi-
mated by the Vlasov term �25�, whereas in the quantal case expres-
sion �26� is used.
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FIG. 3. Same as in Fig. 2, but for 
=0.5, rs=1.
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FIG. 4. Same as in Fig. 2, but for 
=2, rs=1.
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z�k�, must possess a nonpositive imaginary part, i.e., if z�k�
=Re z�k�+ i Im z�k�, then Im z�0. In particular, it is clear
that for the Feynman-like approximation Q�h ,z�= i0+ we get
for the �shifted� collective excitation the value of 	2. How-
ever, for the model function �18�, it is shown in Figs. 5 and 6
that Re z�	2, while the damping becomes more notorious.

We observe that in all cases, except for 
=2 and the
lowest values of q=ka, the effects of degeneracy produce
stronger positive dispersion, i.e., the Langmuir mode fre-
quency become higher than 	p. In addition, degeneracy or
quantum mechanical characteristics of the effective interac-
tion produce also stronger damping of the mode.

Indeed, at higher frequencies, we deal with shorter dis-
tances or shorter times, where the non-Coulomb nature of the
effective potential and the wave nature of electrons become
more pronounced. Notice that these effects are reflected in
the MD calculations using the Deutsch effective potential
and are described in our calculations.

IV. CONCLUSIONS

The agreement with the MD data on the dynamic struc-
ture factor and other dynamic characteristics of the model
system, such as the Langmuir collective mode dispersion, is
improved with respect to the results obtained in Ref. �6�, and,
simultaneously, important statistical characteristics of the

model TCP in concern, like the probability to find both elec-
tron and ion at one point �gei�0��, are determined, the effects
of direct and exchange interactions being compared. The im-
portance of Eq. �26� and the applicability of Eq. �18� are
validated.

Since the static characteristics of the system �the static
structure factors and the radial distribution functions� were
computed with high precision in the way employed in Ref.
�1�, the reliability of the calculation of the characteristic fre-
quencies 	1�k� and 	2�k� is improved. These quantities are
essential to estimate the position and damping of the plasma
collective mode.

Another key ingredient for the good quantitative agree-
ment achieved with the results of Ref. �1� with respect to the
dispersion and decay of the Langmuir mode, is the introduc-
tion of a nonconstant Nevanlinna parameter function ac-
counting for the exact high-frequency asymptotic form of the
system dielectric function. Still, further specification of this
dynamic characteristic similar to the dynamic local-field cor-
rection in a TCP might be needed.

We observed that for the Nevanlinna parameter function
Q=Q�k ,z� considered here, the value of the Langmuir fre-
quency shifts from 	2�k� closer to the plasma frequency, the
effect of which might be considered correct from the experi-
mental point of view. Further extension of the present mixed
approach to more recent data for the model systems de-
scribed by other effective potentials �5,25� is planned.
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excitation mode obtained from Eq. �36� in the classical approxima-
tion. The damped solution stemming from the model function �18�
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